Search results for " mathematical physics"

showing 10 items of 396 documents

Maximal function estimates and self-improvement results for Poincaré inequalities

2018

Our main result is an estimate for a sharp maximal function, which implies a Keith–Zhong type self-improvement property of Poincaré inequalities related to differentiable structures on metric measure spaces. As an application, we give structure independent representation for Sobolev norms and universality results for Sobolev spaces. peerReviewed

Discrete mathematicsPure mathematicsGeneral Mathematics010102 general mathematicsAlgebraic geometryharmoninen analyysi01 natural sciencesUniversality (dynamical systems)Sobolev inequalitySobolev spacesymbols.namesakeNumber theoryinequalities0103 physical sciencesPoincaré conjecturesymbolsharmonic analysisMaximal function010307 mathematical physicsDifferentiable function0101 mathematicsfunktionaalianalyysiepäyhtälötMathematics
researchProduct

Dirichlet approximation and universal Dirichlet series

2016

We characterize the uniform limits of Dirichlet polynomials on a right half plane. In the Dirichlet setting, we find approximation results, with respect to the Euclidean distance and {to} the chordal one as well, analogous to classical results of Runge, Mergelyan and Vitushkin. We also strengthen the notion of universal Dirichlet series.

Pure mathematicsMathematics - Complex VariablesUniversal seriesApplied MathematicsGeneral Mathematics010102 general mathematicsMathematics::Analysis of PDEsMathematics::Spectral Theory16. Peace & justice01 natural sciencesDirichlet distributionEuclidean distancesymbols.namesakeChordal graph0103 physical sciencesRight half-planeFOS: Mathematics30K10symbols010307 mathematical physicsComplex Variables (math.CV)0101 mathematicsDirichlet seriesMathematicsProceedings of the American Mathematical Society
researchProduct

A short proof of the infinitesimal Hilbertianity of the weighted Euclidean space

2020

We provide a quick proof of the following known result: the Sobolev space associated with the Euclidean space, endowed with the Euclidean distance and an arbitrary Radon measure, is Hilbert. Our new approach relies upon the properties of the Alberti-Marchese decomposability bundle. As a consequence of our arguments, we also prove that if the Sobolev norm is closable on compactly-supported smooth functions, then the reference measure is absolutely continuous with respect to the Lebesgue measure.

Mathematics::Functional AnalysisPure mathematicsLebesgue measureEuclidean spaceGeneral Mathematics010102 general mathematicsAbsolute continuity01 natural sciencesMeasure (mathematics)Functional Analysis (math.FA)Mathematics - Functional AnalysisdifferentiaaligeometriaEuclidean distanceSobolev spaceNorm (mathematics)0103 physical sciencesRadon measureFOS: Mathematics010307 mathematical physics0101 mathematicsfunktionaalianalyysi53C23 46E35 26B05MathematicsComptes Rendus. Mathématique
researchProduct

A counterexample to Feit's Problem VIII on decomposition numbers

2016

We find a counterexample to Feit's Problem VIII on the bound of decomposition numbers. This also answers a question raised by T. Holm and W. Willems.

CombinatoricsAlgebra and Number Theory010102 general mathematics0103 physical sciencesDecomposition (computer science)FOS: Mathematics010307 mathematical physics0101 mathematicsRepresentation Theory (math.RT)01 natural sciencesMathematics - Representation TheoryMathematicsCounterexample
researchProduct

On multiplicities of cocharacters for algebras with superinvolution

2021

Abstract In this paper we deal with finitely generated superalgebras with superinvolution, satisfying a non-trivial identity, whose multiplicities of the cocharacters are bounded by a constant. Along the way, we prove that the codimension sequence of such algebras is polynomially bounded if and only if their colength sequence is bounded by a constant.

Pure mathematicsSequenceMultiplicitiesAlgebra and Number TheoryMathematics::Commutative AlgebraSuperinvolution010102 general mathematicsCodimensionCocharacters; Colength; Multiplicities; SuperinvolutionCocharacters01 natural sciencesmultiplicitiecocharacterSettore MAT/02 - AlgebraIdentity (mathematics)SuperinvolutionBounded function0103 physical sciences010307 mathematical physicsFinitely-generated abelian groupColength0101 mathematicsConstant (mathematics)Mathematics
researchProduct

Ideaux à gauche dans les quotients simples de l'algèbre enveloppante de sl(2)

1973

International audience

[MATH.MATH-RT]Mathematics [math]/Representation Theory [math.RT]General Mathematics010102 general mathematics0103 physical sciences010307 mathematical physics0101 mathematics[MATH.MATH-RT] Mathematics [math]/Representation Theory [math.RT]01 natural sciencesComputingMilieux_MISCELLANEOUSMathematics[ MATH.MATH-RT ] Mathematics [math]/Representation Theory [math.RT]
researchProduct

On GIT quotients of Hilbert and Chow schemes of curves

2011

The aim of this note is to announce some results on the GIT problem for the Hilbert and Chow scheme of curves of degree d and genus g in P^{d-g}, whose full details will appear in a subsequent paper. In particular, we extend the previous results of L. Caporaso up to d>4(2g-2) and we observe that this is sharp. In the range 2(2g-2)<d<7/2(2g-2), we get a complete new description of the GIT quotient. As a corollary, we get a new compactification of the universal Jacobian over the moduli space of pseudo-stable curves.

Pure mathematics14L30General MathematicsCompactified universal JacobianHilbert scheme01 natural sciencesMathematics - Algebraic GeometryMathematics::Algebraic Geometry0103 physical sciencesFOS: MathematicsProjective spaceCompactification (mathematics)0101 mathematicsAlgebraic Geometry (math.AG)QuotientMathematicsDegree (graph theory)010102 general mathematicsChow schemeGIT quotientGITModuli spaceStable curvesHilbert schemeScheme (mathematics)Settore MAT/03 - Geometria010307 mathematical physicsPseudo-stable curveElectronic Research Announcements in Mathematical Sciences
researchProduct

Lie Algebras Generated by Extremal Elements

1999

We study Lie algebras generated by extremal elements (i.e., elements spanning inner ideals of L) over a field of characteristic distinct from 2. We prove that any Lie algebra generated by a finite number of extremal elements is finite dimensional. The minimal number of extremal generators for the Lie algebras of type An, Bn (n&gt;2), Cn (n&gt;1), Dn (n&gt;3), En (n=6,7,8), F4 and G2 are shown to be n+1, n+1, 2n, n, 5, 5, and 4 in the respective cases. These results are related to group theoretic ones for the corresponding Chevalley groups.

17B05[ MATH.MATH-GR ] Mathematics [math]/Group Theory [math.GR]Non-associative algebraAdjoint representationGroup Theory (math.GR)01 natural sciences[MATH.MATH-GR]Mathematics [math]/Group Theory [math.GR]Graded Lie algebraCombinatoricsMathematics - Algebraic Geometry0103 physical sciences[MATH.MATH-RA] Mathematics [math]/Rings and Algebras [math.RA]FOS: Mathematics0101 mathematicsAlgebraic Geometry (math.AG)[MATH.MATH-GR] Mathematics [math]/Group Theory [math.GR]MathematicsDiscrete mathematicsAlgebra and Number TheorySimple Lie group010102 general mathematics[MATH.MATH-RA]Mathematics [math]/Rings and Algebras [math.RA]20D06[MATH.MATH-AG] Mathematics [math]/Algebraic Geometry [math.AG]Mathematics - Rings and AlgebrasKilling formAffine Lie algebra[ MATH.MATH-RA ] Mathematics [math]/Rings and Algebras [math.RA]Lie conformal algebra[ MATH.MATH-AG ] Mathematics [math]/Algebraic Geometry [math.AG]Adjoint representation of a Lie algebraRings and Algebras (math.RA)17B05; 20D06010307 mathematical physics[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG]Mathematics - Group TheoryJournal of Algebra
researchProduct

Surfaces of minimal degree of tame representation type and mutations of Cohen–Macaulay modules

2017

We provide two examples of smooth projective surfaces of tame CM type, by showing that any parameter space of isomorphism classes of indecomposable ACM bundles with fixed rank and determinant on a rational quartic scroll in projective 5-space is either a single point or a projective line. For surfaces of minimal degree and wild CM type, we classify rigid Ulrich bundles as Fibonacci extensions. For the rational normal scrolls S(2,3) and S(3,3), a complete classification of rigid ACM bundles is given in terms of the action of the braid group in three strands.

[ MATH ] Mathematics [math]Pure mathematicsFibonacci numberGeneral MathematicsType (model theory)Rank (differential topology)Commutative Algebra (math.AC)01 natural sciencesMathematics - Algebraic GeometryACM bundlesVarieties of minimal degreeMathematics::Algebraic Geometry0103 physical sciencesFOS: MathematicsMathematics (all)Rings0101 mathematics[MATH]Mathematics [math]Algebraic Geometry (math.AG)MathematicsDiscrete mathematics14F05 13C14 14J60 16G60010102 general mathematicsVarietiesMCM modulesACM bundles; MCM modules; Tame CM type; Ulrich bundles; Varieties of minimal degree; Mathematics (all)Ulrich bundlesMathematics - Commutative AlgebraQuintic functionElliptic curveTame CM typeProjective lineBundles010307 mathematical physicsIsomorphismIndecomposable moduleMSC: 14F05; 13C14; 14J60; 16G60
researchProduct

On the arithmetic of a family of degree-two K3 surfaces

2018

Let $\mathbb{P}$ denote the weighted projective space with weights $(1,1,1,3)$ over the rationals, with coordinates $x,y,z,$ and $w$; let $\mathcal{X}$ be the generic element of the family of surfaces in $\mathbb{P}$ given by \begin{equation*} X\colon w^2=x^6+y^6+z^6+tx^2y^2z^2. \end{equation*} The surface $\mathcal{X}$ is a K3 surface over the function field $\mathbb{Q}(t)$. In this paper, we explicitly compute the geometric Picard lattice of $\mathcal{X}$, together with its Galois module structure, as well as derive more results on the arithmetic of $\mathcal{X}$ and other elements of the family $X$.

Surface (mathematics)Rational numberPure mathematicsDegree (graph theory)Mathematics - Number TheoryGeneral Mathematics010102 general mathematics11G35 14J2801 natural sciencesMathematics - Algebraic GeometryTheoryofComputation_ANALYSISOFALGORITHMSANDPROBLEMCOMPLEXITY0103 physical sciencesFOS: Mathematics010307 mathematical physicsNumber Theory (math.NT)0101 mathematicsArithmeticElement (category theory)Weighted projective spaceAlgebraic Geometry (math.AG)Mathematics
researchProduct