Search results for " mathematical physics"
showing 10 items of 396 documents
Maximal function estimates and self-improvement results for Poincaré inequalities
2018
Our main result is an estimate for a sharp maximal function, which implies a Keith–Zhong type self-improvement property of Poincaré inequalities related to differentiable structures on metric measure spaces. As an application, we give structure independent representation for Sobolev norms and universality results for Sobolev spaces. peerReviewed
Dirichlet approximation and universal Dirichlet series
2016
We characterize the uniform limits of Dirichlet polynomials on a right half plane. In the Dirichlet setting, we find approximation results, with respect to the Euclidean distance and {to} the chordal one as well, analogous to classical results of Runge, Mergelyan and Vitushkin. We also strengthen the notion of universal Dirichlet series.
A short proof of the infinitesimal Hilbertianity of the weighted Euclidean space
2020
We provide a quick proof of the following known result: the Sobolev space associated with the Euclidean space, endowed with the Euclidean distance and an arbitrary Radon measure, is Hilbert. Our new approach relies upon the properties of the Alberti-Marchese decomposability bundle. As a consequence of our arguments, we also prove that if the Sobolev norm is closable on compactly-supported smooth functions, then the reference measure is absolutely continuous with respect to the Lebesgue measure.
A counterexample to Feit's Problem VIII on decomposition numbers
2016
We find a counterexample to Feit's Problem VIII on the bound of decomposition numbers. This also answers a question raised by T. Holm and W. Willems.
On multiplicities of cocharacters for algebras with superinvolution
2021
Abstract In this paper we deal with finitely generated superalgebras with superinvolution, satisfying a non-trivial identity, whose multiplicities of the cocharacters are bounded by a constant. Along the way, we prove that the codimension sequence of such algebras is polynomially bounded if and only if their colength sequence is bounded by a constant.
Ideaux à gauche dans les quotients simples de l'algèbre enveloppante de sl(2)
1973
International audience
On GIT quotients of Hilbert and Chow schemes of curves
2011
The aim of this note is to announce some results on the GIT problem for the Hilbert and Chow scheme of curves of degree d and genus g in P^{d-g}, whose full details will appear in a subsequent paper. In particular, we extend the previous results of L. Caporaso up to d>4(2g-2) and we observe that this is sharp. In the range 2(2g-2)<d<7/2(2g-2), we get a complete new description of the GIT quotient. As a corollary, we get a new compactification of the universal Jacobian over the moduli space of pseudo-stable curves.
Lie Algebras Generated by Extremal Elements
1999
We study Lie algebras generated by extremal elements (i.e., elements spanning inner ideals of L) over a field of characteristic distinct from 2. We prove that any Lie algebra generated by a finite number of extremal elements is finite dimensional. The minimal number of extremal generators for the Lie algebras of type An, Bn (n>2), Cn (n>1), Dn (n>3), En (n=6,7,8), F4 and G2 are shown to be n+1, n+1, 2n, n, 5, 5, and 4 in the respective cases. These results are related to group theoretic ones for the corresponding Chevalley groups.
Surfaces of minimal degree of tame representation type and mutations of Cohen–Macaulay modules
2017
We provide two examples of smooth projective surfaces of tame CM type, by showing that any parameter space of isomorphism classes of indecomposable ACM bundles with fixed rank and determinant on a rational quartic scroll in projective 5-space is either a single point or a projective line. For surfaces of minimal degree and wild CM type, we classify rigid Ulrich bundles as Fibonacci extensions. For the rational normal scrolls S(2,3) and S(3,3), a complete classification of rigid ACM bundles is given in terms of the action of the braid group in three strands.
On the arithmetic of a family of degree-two K3 surfaces
2018
Let $\mathbb{P}$ denote the weighted projective space with weights $(1,1,1,3)$ over the rationals, with coordinates $x,y,z,$ and $w$; let $\mathcal{X}$ be the generic element of the family of surfaces in $\mathbb{P}$ given by \begin{equation*} X\colon w^2=x^6+y^6+z^6+tx^2y^2z^2. \end{equation*} The surface $\mathcal{X}$ is a K3 surface over the function field $\mathbb{Q}(t)$. In this paper, we explicitly compute the geometric Picard lattice of $\mathcal{X}$, together with its Galois module structure, as well as derive more results on the arithmetic of $\mathcal{X}$ and other elements of the family $X$.